Investigating the
biophysical basis of computation
& the computational basis of pain

new publications-banner


By clicking pdf links on this page, you are making a direct request for a reprint from the authors and agree that the material will be used exclusively for research and/or educational purposes. Please also visit our Research page to see the thematic connections between publications.




Takkala P, Zhu Y, Prescott SA.

Combined changes in chloride regulation and neuronal excitability enable primary afferent depolarization to elicit spiking without compromising its inhibitory effects.

PLoS Comput Biol 2016; e1005215.

Doyon N, Vinay L, Prescott SA, De Koninck Y.

Chloride regulation: A dynamic equilibrium crucial for synaptic inhibition.

Neuron 2016; 89: 1157-1172.


Doyon N, Prescott SA, De Koninck Y.

Mild KCC2 hypofunction causes inconspicuous chloride dysregulation that degrades neural coding.

Front Cell Neurosci 2016; 9:516.


Ratté S, Prescott SA.

Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degeneracy.

Curr Opin Neurobiol 2016; 36:31–37.


Khubieh A, Ratté S, Lankarany M, Prescott SA.

Regulation of cortical dynamic range by background synaptic noise and feedforward inhibition.

Cerebral Cortex 2016; 26: 3357-69.


Coggan JS, Bittner S, Stiefel KM, Meuth SG, Prescott SA.

Physiological Dynamics in Demyelinating Diseases: Unravelling Complex Relationships through Computer Modeling.

Int J Molec Sci 2015; 16(9:, 21215-21236.


Lee KY, Prescott SA.

Chloride dysregulation and inhibitory receptor blockade yield equivalent disinhibition of spinal neurons yet are differentially reversed by carbonic anhydrase blockade.

Pain 2015; 156: 2431-2437.


Coggan JS, Sejnowski TJ, Prescott SA.

Cooperativity between remote sites of ectopic spiking allows afterdischarge to be initiated and maintained at different locations.

J Comput Neurosci 2015; 39: 17-28.


Price TJ, Prescott SA.

Inhibitory regulation of the pain gate and how its failure cause pathological pain.

Pain 2015; 156: 789-792.

 2015RatteFrontimage Ratté S, Lankarany M, Rho YA, Patterson A, Prescott SA.
Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input.
Front Cell Neurosci 2015; 8: 452.

Zhu Y, Feng B, Schwartz ES, Gebhart GF, Prescott SA.

Novel method to assess axonal excitability using channelrhodopsin-based photoactivation.

J Neurophysiol. 2015; 113: jn.00982.2014.


Ratté S, Zhu Y, Lee KY, Prescott SA.

Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain.

Elife. 2014 Apr 1>;3:e02370.

Also see the accompanying Insight article , "The pros and cons of degeneracy", by J Goaillard and MA Dufour, and eLife Podcast with Christopher Smith.


Prescott SA, Ma Q, De Koninck Y.

Normal and abnormal coding of somatosensory stimuli causing pain.

Nat Neurosci. 2014 Feb;17(2):183-91.

 2013RatteNeuronimage Ratté S, Hong S, De Schutter E, Prescott SA.
Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer.
Neuron. 2013 Jun 5;78(5):758-72. doi: 10.1016/j.neuron.2013.05.030.
 2012RatteCurrOpimage Prescott SA, Ratté S
Pain processing by spinal microcircuits: afferent combinatorics.
Curr Opin Neurobiol. 2012 Aug;22(4):631-9. 
 2012Rhoimage Rho Y-A &Prescott SA.
Identification of molecular pathologies sufficient to cause neuropathic excitability in primary somatosensory afferents using dynamical systems theory.
PLoS Comput Biol 2012; 8: e1002524.
 2012Hongimage Hong S, Ratté S, Prescott SA & De Schutter E.
Single neuron firing properties impact correlation-based coding.
J Neurosci 2012; 32: 1413-1428. 
 2011RatteJNeurosci Ratté S & Prescott SA.
ClC-2 channels regulate neuronal excitability, not intracellular chloride levels.
J. Neurosci. 2011; 31: 15838-15843.
 2011Cogganimage Coggan JS, Ocker GK, Sejnowski TJ & Prescott SA.
Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models.
J. Neural. Eng. 2011; 8: 065002.
 2011Doyonimage1 Doyon N, Prescott SA, Castonguay, Godin AG, Kroger H & De Koninck Y.
Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis.
PLoS Comput. Biol. 2011; 7: e1002149.
 2010Coggan Coggan JS, Prescott SA, Bartol JA & Sejnowski TJ.
Imbalance of ionic conductances contributes to diverse symptoms of demyelination.
Proc. Natl. Acad. Sci. USA 2010; 107: 20602-20609.
 2009Priceimage Price TJ, Cervero F, Gold MS, Hammond D, Prescott SA.
Chloride regulation in the pain pathway.
Brain Res. Rev. 2009; 60: 149-170.
 2008PrescottJneurosciimage Prescott SA & Sejnowski TJ.
Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms.
J. Neurosci. 2008; 28: 13649-13661.
 2008PrescottJNeurophysimage Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ.
Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions.
J. Neurophysiol. 2008; 100: 3030-3042.
 2008PrescottPlosCBimage Prescott SA, De Koninck Y, Sejnowski TJ.
Biophysical basis for three distinct dynamical mechanisms of action potential initiation.
PLoS Comput. Biol. 2008; 4: e1000198.
 2008Ratte Ratté S, Prescott SA, Collinge J, Jefferys JGR.
Mouse model of variant CJD exhibits prion strain-specific changes in NMDA receptor-dependent excitation causing bursts in the hippocampus.
Neurobiol. Dis. 2008; 32: 96-104. 
 2006PrescottMolecPainimage Prescott SA, Sejnowski TJ, De Koninck Y.
Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain.
Mol. Pain 2006; 2: 32.
 2006PrescottJNeuroscimage Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ.
Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons.
J. Neurosci. 2006; 26: 9084-9097. Rated “must read” in Faculty of 1000 Biology.
 2005Prescottimage Prescott SA, De Koninck Y. 2005.
Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization.
J. Neurosci. 2005; 25: 4743-4754.
 2003Coullimage Coull JAM, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y.
Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain.
Nature 2003; 424: 938-942. 
 2003PrescottPNASimage Prescott SA, De Koninck Y.
Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation.
Proc. Natl. Acad. Sci. USA 2003: 100; 2076-2081. 
 2002Prescottimage Prescott SA, De Koninck Y.
Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat.
J. Physiol. 2002: 539; 817-836.



Book Chapters


Prescott SA, Ratté S.
Somatosensation and pain.
Chapter 11 in: Conn's Translational Neuroscience. 2017. Conn (ed). Elsevier.
**Please contact us to request a copy

2015PrescottMolecBioPainimage Prescott SA
Synaptic inhibition and disinhibition in the spinal dorsal horn.
In: Molecular Biology of Pain, Progress in Molecular and Translational Science. 2015. Price TJ, Dussor G (eds). Elsevier.
2014Encycchap226image Prescott SA
Chloride channels.
Chapter 226 in: Encyclopedia of Computational Neuroscience. 2014. Jaeger D, Jung R (eds). Springer.


Prescott SA
Excitability: Hodgkin’s classes I, II, and III.
Chapter 151 in: Encyclopedia of Computational Neuroscience. 2014. Jaeger D, Jung R (eds). Springer.


Prescott SA
Pathological changes in peripheral nerve excitability.
Chapter 748 in: Encyclopedia of Computational Neuroscience. 2014. Jaeger D, Jung R (eds). Springer.


Prescott SA
Pain processing pathway models.
Chapter 250 in: Encyclopedia of Computational Neuroscience. 2014. Jaeger D, Jung R (eds). Springer. 2014.

2009DynClampChap Prescott SA & De Koninck Y.
Impact of background synaptic activity on neuronal response properties revealed by stepwise replication of in vivo-like conditions in vitro. In: The Dynamic Clamp: From Principles to Applications.
Destexhe A & Bal T (eds). Springer. 2009.